Exams
Subjects
Classes
Login / Register
Home
Mathematics
List of top Mathematics Questions on integral
Evaluate the integral: \[ \int \frac{x^2 + 2x}{\sqrt{x^2 + 1}} \, dx \]
MHT CET - 2025
MHT CET
Mathematics
integral
Evaluate the integral: \[ \int \sqrt{x^2 + 3x} \, dx \]
MHT CET - 2025
MHT CET
Mathematics
integral
The value of the integral \( \int_0^1 x^2 \, dx \) is:
MHT CET - 2025
MHT CET
Mathematics
integral
The value of the definite integral \( \int_0^{\pi} \sin^2 x \, dx \) is:
MHT CET - 2025
MHT CET
Mathematics
integral
Find the value of the integral: \[ \int_0^\pi \sin^2(x) \, dx. \]
BITSAT - 2025
BITSAT
Mathematics
integral
Evaluate the integral:
$$ \int_0^{\pi/4} \frac{\ln(1 + \tan x)}{\cos x \sin x} \, dx $$
BITSAT - 2025
BITSAT
Mathematics
integral
Evaluate the integral
\( \int_0^1 \frac{\ln(1 + x)}{1 + x^2} \, dx \)
BITSAT - 2025
BITSAT
Mathematics
integral
The solution of the differential equation \( y^2 dx + (x^2 - xy + y^2) dy = 0 \) is
MHT CET - 2024
MHT CET
Mathematics
integral
The order and degree of the differential equation \( \sqrt{\frac{dy}{dx}} - 4 \frac{dy}{dx} - 7x = 0 \) are respectively
MHT CET - 2024
MHT CET
Mathematics
integral
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).
MHT CET - 2024
MHT CET
Mathematics
integral
The area enclosed by the curves \( y = x^3 \) and \( y = \sqrt{x} \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The value of \( \int_0^{\frac{\pi}{2}} \frac{\sin\left( \frac{\pi}{4} + x \right) + \sin\left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int \frac{x^2 (x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx \]
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int_{5}^{9} \frac{\log 3x^2}{\log 3x^2 + \log (588 - 84x + 3x^2)} dx \]
BITSAT - 2024
BITSAT
Mathematics
integral
The value of definite integral \( \int_0^{\pi/2} \log(\tan x) dx \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The value of \( \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The value of \( \int e^{\tan \theta} (\sec \theta - \sin \theta) \, d\theta \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int \sqrt{x + \sqrt{x^2 + 2}} \, dx. \]
BITSAT - 2024
BITSAT
Mathematics
integral
Evaluate the integral:
\[ \int \frac{x^3 - 1}{x^3 + x} dx \]
BITSAT - 2024
BITSAT
Mathematics
integral
Consider the function
\( f(x) = \frac{|x - 1|}{x^2} \).
Then \( f(x) \) is:
BITSAT - 2024
BITSAT
Mathematics
integral
The function
\[ f(x) = \frac{\cos x}{\left\lfloor \frac{2x}{\pi} \right\rfloor + \frac{1}{2}}, \]
where \( x \) is not an integral multiple of \( \pi \) and \( \lfloor \cdot \rfloor \) denotes the greatest integer function, is:
BITSAT - 2024
BITSAT
Mathematics
integral