Step 1: Given function:
\[ f(x) = \begin{cases} \frac{x - 1}{x^2}, & x \geq 1 \\ \frac{-x + 1}{x^2}, & x < 1 \end{cases} \] Simplified \( f(x) \):
\[ f(x) = \begin{cases} \frac{1}{x} - \frac{1}{x^2}, & x \geq 1 \\ -\frac{1}{x} + \frac{1}{x^2}, & x < 1 \end{cases} \] Derivative \( f'(x) \):
\[ f'(x) = \begin{cases} -\frac{1}{x^2} + \frac{2}{x^3}, & x \geq 1 \\ \frac{1}{x^2} - \frac{2}{x^3}, & x < 1 \end{cases} \] Further simplified \( f'(x) \):
\[ f'(x) = \begin{cases} \frac{2 - x}{x^3}, & x \geq 1 \\ \frac{x - 2}{x^3}, & x < 1 \end{cases} \] Sign analysis of \( f'(x) \):
Monotonicity intervals of \( f(x) \):
| \(-\infty\) | 0 | 1 | 2 | \(+\infty\) | ||||
|---|---|---|---|---|---|---|---|---|
| + | - | + | - | |||||
| Undefined | ||||||||