Question:medium

Evaluate the integral: \[ \int \frac{x^2 + 2x}{\sqrt{x^2 + 1}} \, dx \]

Show Hint

Remember: For integrals involving square roots, substitution can simplify the process significantly.
Updated On: Nov 26, 2025
  • \( \frac{1}{3} \left( x^2 + 1 \right)^{3/2} \)
  • \( \frac{1}{2} \left( x^2 + 1 \right)^{3/2} \)
  • \( \frac{1}{2} \left( x^2 + 1 \right)^{5/2} \)
  • \( \frac{1}{3} \left( x^2 + 1 \right)^{5/2} \)
Hide Solution

The Correct Option is B

Solution and Explanation

Step 1: Integral Simplification The integral is: \[ \int \frac{x^2 + 2x}{\sqrt{x^2 + 1}} \, dx \] Decompose into: \[ = \int \frac{x^2}{\sqrt{x^2 + 1}} \, dx + \int \frac{2x}{\sqrt{x^2 + 1}} \, dx \]

Step 2: Individual Integral Solution For the second integral, use substitution: \[ u = x^2 + 1 \quad \Rightarrow \quad du = 2x \, dx \] The integral becomes: \[ \int \frac{2x}{\sqrt{x^2 + 1}} \, dx = \int \frac{du}{\sqrt{u}} = 2\sqrt{u} = 2\sqrt{x^2 + 1} \] The first integral is simplified via substitution: \[ \int \frac{x^2}{\sqrt{x^2 + 1}} \, dx = \int \sqrt{x^2 + 1} \, dx \] This is solvable using standard methods for square root integration. 

Answer: The solution is: \[ \frac{1}{2} \left( x^2 + 1 \right)^{3/2} + C \]

Was this answer helpful?
0