Step 1: Compute \( f(-x) \)
\[ f(-x) = \frac{\cos(-x)}{\left\lfloor \frac{2(-x)}{\pi} \right\rfloor + \frac{1}{2}}. \] Given \( \cos(-x) = \cos x \) and using the floor function property: \[ \left\lfloor \frac{2(-x)}{\pi} \right\rfloor = - \left\lfloor \frac{2x}{\pi} \right\rfloor - 1. \] Step 2: Compare \( f(-x) \) with \( -f(x) \)
\[ f(-x) = -f(x). \] Step 3: Conclusion
As \( f(-x) = -f(x) \), the function is odd.