By employing the substitution \( u = x + \sqrt{x^2 + 2} \), we proceed to calculate the integral:
\[int \sqrt{x + \sqrt{x^2 + 2}} \, dx\]
\[\text{Let } \sqrt{x + \sqrt{x^2 + 2}} = t \Rightarrow x + \sqrt{x^2 + 2} = t^2\]
\[\sqrt{x^2 + 2} = t^2 - x\]
\[\Rightarrow x^2 + 2 = t^4 + x^2 - 2t^2x\]
\[\Rightarrow x = \frac{t^4 - 2}{2t^2} \Rightarrow dx = \frac{t^4 + 2}{t^3} \, dt\]
\[\int t \cdot \frac{t^4 + 2}{t^3} \, dt = \int \left(t^2 + \frac{2}{t^2}\right) \, dt = \frac{t^3}{3} - \frac{2}{t} + C\]
\[= \frac{t^4 - 6}{3t} + C\]
\[= \frac{(x + \sqrt{x^2 + 2})^2 - 6}{3\sqrt{x + \sqrt{x^2 + 2}}} + C\]