Question:medium

The value of \( \int e^{\tan \theta} (\sec \theta - \sin \theta) \, d\theta \) is:

Show Hint

When dealing with integrals involving trigonometric functions, break the expression into manageable parts and use standard integration identities.
Updated On: Nov 26, 2025
  • \( e^{\tan \theta} \sec \theta + c \)
  • \( e^{\tan \theta} \sin \theta + c \)
  • \( e^{\tan \theta} \sin \theta + c \)
  • \( e^{\tan \theta} \cos \theta + c \)
Hide Solution

The Correct Option is D

Solution and Explanation

Step 1: The given integral is \( I = \int e^{\tan \theta} (\sec \theta - \sin \theta) d\theta \). Distribute the terms within the integral: \[ I = \int e^{\tan \theta} (\sec \theta - \sin \theta) \, d\theta \] Let \( \tan \theta = t \). Then \( \sec^2 \theta \, d\theta = dt \), which implies \( d\theta = \frac{dt}{1+t^2} \). \[ \Rightarrow I = \int e^t \left(\sqrt{1+t^2} - \frac{t}{\sqrt{1+t^2}}\right) \frac{dt}{1+t^2} \] \[= \int e^t \left(\frac{1}{\sqrt{1+t^2}} - \frac{t}{(1+t^2)^{3/2}}\right) \, dt\] Integrate the first term \( \frac{1}{\sqrt{1+t^2}} e^t \) by parts. This yields: \[= \frac{1}{\sqrt{1+t^2}} e^t - \int \frac{t}{(1+t^2)^{3/2}} e^t \, dt + \int \frac{t}{(1+t^2)^{3/2}} e^t \, dt + c\] The integral terms cancel out: \[= \frac{e^t}{\sqrt{1+t^2}} + c\] Substitute back \( t = \tan \theta \): \[= \frac{e^{\tan \theta}}{\sqrt{1+\tan^2 \theta}} + c\] Since \( \sqrt{1+\tan^2 \theta} = \sec \theta \), we have: \[= \frac{e^{\tan \theta}}{\sec \theta} + c\] \[= e^{\tan \theta} \cos \theta + c\] The final answer is \( e^{\tan \theta} \cos \theta + c \).
Was this answer helpful?
0