Question:medium

Evaluate the integral: \[ \int \sqrt{x^2 + 3x} \, dx \]

Updated On: Nov 26, 2025
Hide Solution

Solution and Explanation

The integral to be evaluated is:

\[ \int \sqrt{x^2 + 3x} \, dx \]

Step 1: Complete the square

The quadratic expression under the square root is \(x^2 + 3x\). Completing the square yields:

\[ x^2 + 3x = \left( x + \frac{3}{2} \right)^2 - \frac{9}{4} \]

The integral transforms to:

\[ \int \sqrt{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4}} \, dx \]

Step 2: Perform substitution

Let \( u = x + \frac{3}{2} \), so \( du = dx \). The integral becomes:

\[ \int \sqrt{u^2 - \frac{9}{4}} \, du \]

Step 3: Apply standard integral formula

Utilize the formula for \( \int \sqrt{u^2 - a^2} \, du \):

\[ \int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right| + C \]

With \( a = \frac{3}{2} \), the expression is:

\[ \frac{u}{2} \sqrt{u^2 - \frac{9}{4}} - \frac{\frac{9}{4}}{2} \ln \left| u + \sqrt{u^2 - \frac{9}{4}} \right| + C \]

Step 4: Substitute back

Replace \( u \) with \( x + \frac{3}{2} \):

\[ \frac{x + \frac{3}{2}}{2} \sqrt{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4}} - \frac{9}{8} \ln \left| x + \frac{3}{2} + \sqrt{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4}} \right| + C \]

Final Result:

The integrated form is:

\[ \int \sqrt{x^2 + 3x} \, dx = \frac{x + \frac{3}{2}}{2} \sqrt{x^2 + 3x} - \frac{9}{8} \ln \left| x + \frac{3}{2} + \sqrt{x^2 + 3x + \frac{9}{4}} \right| + C \]

Was this answer helpful?
0