To determine the potential difference across capacitor $C_2$, execute the subsequent steps:
Step 1: Calculate the equivalent capacitance for series capacitors utilizing the formula:
$$ \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} $$
Input values:
$$ \frac{1}{C_{eq}} = \frac{1}{4\mu F} + \frac{1}{6\mu F} $$
$$ \frac{1}{C_{eq}} = \frac{3}{12\mu F} + \frac{2}{12\mu F} $$
$$ \frac{1}{C_{eq}} = \frac{5}{12\mu F} $$
Therefore,
$$ C_{eq} = \frac{12}{5}\mu F = 2.4\mu F $$
Step 2: Employing the formula $Q = C \cdot V$, the total charge $Q$ across series capacitors remains constant:
Substitute $C_{eq}$ and $V_{total}$:
$$ Q = C_{eq} \cdot V_{total} = 2.4\mu F \cdot 60V = 144\mu C $$
Step 3: Ascertain the potential difference across $C_2$. Rearranging $Q = C \cdot V$ for $V$:
$$ V_{C_2} = \frac{Q}{C_2} = \frac{144\mu C}{6\mu F} $$
$$ V_{C_2} = 24V $$
Consequently, the potential difference across $C_2$ is 24 V.