Step 1: Height of the trapezium
Since \(\angle ABC=90^\circ\) and \(AB\parallel CD\), \(BC\) is perpendicular to both bases, thus the height \(h=BC=4\ \mathrm{cm}\).
Step 2: Find the other base \(AB\)
Place \(A(0,0)\). Let \(AB=x\), so \(B(x,0)\). Since \(CD\parallel AB\) and \(BC=4\), then \(C(x,-4)\) and \(D(x-5,-4)\) (because \(CD=5\)).
Vector \(\overrightarrow{AD}=(x-5,-4)\). Given \(\angle BAD=45^\circ\), the slope magnitude of \(AD\) is \(|-4/(x-5)|=\tan 45^\circ=1\), so \(|x-5|=4\).
Choose \(x-5=4\) (to keep vertices in order), so \(x=9\), and \(AB=9\ \mathrm{cm}\).
Step 3: Area
\(\displaystyle \text{Area}=\frac{(AB+CD)}{2}\times h=\frac{(9+5)}{2}\times 4=7\times 4=28\ \mathrm{cm}^2.\)
\[\n\boxed{28\ \mathrm{cm}^2}\n\]