Step 1: Apply the fringe width formula for Young's double-slit experiment
The fringe width ($\beta$) is calculated using the formula:
\[
\beta = \frac{\lambda L}{d}
\]
where:
- $\beta$ denotes the fringe width,
- $\lambda$ represents the wavelength of light,
- $L$ is the distance from the slits to the screen,
- $d$ is the separation between the slits.
Step 2: Input the provided values
Given parameters:
- Wavelength $\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}$
- Slit separation $d = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m}$
- Distance to screen $L = 2 \, \text{m}$
Substitute these values into the formula:
\[
\beta = \frac{600 \times 10^{-9} \times 2}{0.2 \times 10^{-3}}
\]
Perform the calculation:
\[
\beta = \frac{1200 \times 10^{-9}}{0.2 \times 10^{-3}} = \frac{1200}{0.2} \times 10^{-6} = 6 \times 10^{-3} = 0.6 \, \text{mm}
\]
Answer: The separation between adjacent bright fringes is $0.6 \, \text{mm}$. This corresponds to option (2).