Question:medium

A light ray passes from air (refractive index \( n_1 = 1 \)) into water (refractive index \( n_2 = 1.33 \)). If the angle of incidence is \( 30^\circ \), what is the angle of refraction in the water?

Show Hint

Snell's law relates the angles of incidence and refraction through the refractive indices. Always use the sine of the angles in the law.
Updated On: Nov 26, 2025
  • \( 22^\circ \)
  • \( 30^\circ \)
  • \( 23.6^\circ \)
  • \( 40^\circ \)
Hide Solution

The Correct Option is C

Solution and Explanation

Step 1: Apply Snell's Law of refraction \[n_1 \sin \theta_1 = n_2 \sin \theta_2\]Definitions: - \( n_1 \): refractive index of air - \( n_2 \): refractive index of water - \( \theta_1 \): angle of incidence - \( \theta_2 \): angle of refractionGiven values: - \( n_1 = 1 \) - \( n_2 = 1.33 \) - \( \theta_1 = 30^\circ \)Substitute known values into Snell's Law:\[1 \times \sin(30^\circ) = 1.33 \times \sin(\theta_2)\]Calculate \( \sin(\theta_2) \):\[\sin(\theta_2) = \frac{\sin(30^\circ)}{1.33} = \frac{0.5}{1.33} \approx 0.3759\]Determine \( \theta_2 \):\[\theta_2 = \sin^{-1}(0.3759) \approx 23.6^\circ\]Result: The angle of refraction in water is approximately \( 23.6^\circ \). This corresponds to option (3).
Was this answer helpful?
0