Question:medium

If A, B, C, D are the angles of a quadrilateral, then \[ \frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \]

Show Hint

For angles in a quadrilateral, the sum of angles is \( 360^\circ \). This property can be used to simplify trigonometric expressions involving the angles.
Updated On: Nov 26, 2025
  • \(\cot A\) \(\cot B\) \(\cot C\) \(\cot D\)
  • \(\tan A\) \(\tan B\) \(\tan C\) \(\tan D\)
  • \(
    \tan A\) \(\tan B\) \(\tan C\) \(\tan D\)
  • \(
    \cot A\) \(\cot B\) \(\cot C\) \(\cot D\)
Hide Solution

The Correct Option is B

Solution and Explanation

Step 1: Apply the property of angles in a quadrilateral. The sum of interior angles in a quadrilateral is \( 360^\circ \): \[A + B + C + D = 360^\circ\]
Step 2: Express \(\tan\) and \(\cot\) in terms of each other.
Recall the identity \(\cot \theta = \frac{1}{\tan \theta}\).
Step 3: Simplify the provided expression.
\[\frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \frac{\tan A + \tan B + \tan C + \tan D}{\frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan C} + \frac{1}{\tan D}}\] \[= \frac{\tan A + \tan B + \tan C + \tan D}{\frac{\tan B \tan C \tan D + \tan A \tan C \tan D + \tan A \tan B \tan D + \tan A \tan B \tan C}{\tan A \tan B \tan C \tan D}}\] \[= \frac{(\tan A + \tan B + \tan C + \tan D) \cdot (\tan A \tan B \tan C \tan D)}{\tan B \tan C \tan D + \tan A \tan C \tan D + \tan A \tan B \tan D + \tan A \tan B \tan C}\] \[= \tan A \tan B \tan C \tan D\]
Step 4: State the final result.
The expression simplifies to \(\tan A \tan B \tan C \tan D\).
Was this answer helpful?
0

Top Questions on Geometry