Question:medium

If \( a, b, c \) are positive real numbers each distinct from unity, then the value of the determinant \[ \left| \begin{matrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{matrix} \right| \] is:

Show Hint

When dealing with determinants involving logarithms, recognize patterns of linear dependence in the rows or columns, which may lead to a determinant of zero.
Updated On: Nov 28, 2025
  • 0
  • 1
  • \( \log_e (abc) \)
  • \( \log_a \log_e b \log_c \)
Hide Solution

The Correct Option is A

Solution and Explanation

To calculate the determinant of the given matrix: \[ \left| \begin{matrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{matrix} \right| \], we use logarithm and determinant properties. The matrix uses logarithmic relationships with distinct bases \(a, b, c\).
The goal is to show the determinant is zero. To simplify, recall these identities:
  • \(\log_a b = \frac{\log b}{\log a}\)
  • \(\log_b a = \frac{\log a}{\log b}\)
  • \(\log_a c = \frac{\log c}{\log a}\)
  • \(\log_c a = \frac{\log a}{\log c}\)
  • \(\log_b c = \frac{\log c}{\log b}\)
  • \(\log_c b = \frac{\log b}{\log c}\)
Substituting gives the matrix:
1\(\frac{\log b}{\log a}\)\(\frac{\log c}{\log a}\)
\(\frac{\log a}{\log b}\)1\(\frac{\log c}{\log b}\)
\(\frac{\log a}{\log c}\)\(\frac{\log b}{\log c}\)1
Consider determinant expansion by the first row:
\[\text{det} = 1 \times \left(1- \frac{\log c}{\log b} \cdot \frac{\log b}{\log c}\right) - \frac{\log b}{\log a} \times \left(\frac{\log a}{\log b}-\frac{\log c}{\log b} \cdot 1\right) + \frac{\log c}{\log a} \times \left(\frac{\log a}{\log c}-\frac{\log b}{\log c} \cdot 1\right)\]
Each bracket simplifies to zero:
  • First: \(1-\frac{\log c}{\log b} \cdot \frac{\log b}{\log c} = 1-1 = 0\)
  • Second: \(-\frac{\log b}{\log a} \cdot (\frac{\log a - \log c}{\log b}) = -\frac{\log a - \log c}{\log a}\)
  • Third: \(\frac{\log c}{\log a} \cdot (\frac{\log a - \log b}{\log c}) = \frac{\log a - \log b}{\log a}\)
Thus, the terms cancel. Therefore, the determinant equals:
\[1 \times 0 - \left(\frac{\log a - \log c}{\log a}\right) + \left(\frac{\log a - \log b}{\log a}\right) = 0\]Hence, the determinant is zero.
Was this answer helpful?
0