If \( a, b, c \) are positive real numbers each distinct from unity, then the value of the determinant
\[
\left| \begin{matrix}
1 & \log_a b & \log_a c \\
\log_b a & 1 & \log_b c \\
\log_c a & \log_c b & 1
\end{matrix} \right|
\]
is:
Show Hint
When dealing with determinants involving logarithms, recognize patterns of linear dependence in the rows or columns, which may lead to a determinant of zero.
To calculate the determinant of the given matrix: \[ \left| \begin{matrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{matrix} \right| \], we use logarithm and determinant properties. The matrix uses logarithmic relationships with distinct bases \(a, b, c\). The goal is to show the determinant is zero. To simplify, recall these identities:
\(\log_a b = \frac{\log b}{\log a}\)
\(\log_b a = \frac{\log a}{\log b}\)
\(\log_a c = \frac{\log c}{\log a}\)
\(\log_c a = \frac{\log a}{\log c}\)
\(\log_b c = \frac{\log c}{\log b}\)
\(\log_c b = \frac{\log b}{\log c}\)
Substituting gives the matrix:
1
\(\frac{\log b}{\log a}\)
\(\frac{\log c}{\log a}\)
\(\frac{\log a}{\log b}\)
1
\(\frac{\log c}{\log b}\)
\(\frac{\log a}{\log c}\)
\(\frac{\log b}{\log c}\)
1
Consider determinant expansion by the first row: \[\text{det} = 1 \times \left(1- \frac{\log c}{\log b} \cdot \frac{\log b}{\log c}\right) - \frac{\log b}{\log a} \times \left(\frac{\log a}{\log b}-\frac{\log c}{\log b} \cdot 1\right) + \frac{\log c}{\log a} \times \left(\frac{\log a}{\log c}-\frac{\log b}{\log c} \cdot 1\right)\] Each bracket simplifies to zero: