We can simplify the equation using the change of base formula:
$\frac{\log(a+b)}{\log 9} \cdot \log 2 + \frac{\log(a-b)}{\log 27} \cdot \log 3 = \frac{2}{3}$
$\frac{\log(a+b)}{2\log 3} \cdot \log 2 + \frac{\log(a-b)}{3\log 3} \cdot \log 3 = \frac{2}{3}$
$\frac{\log(a+b)}{2} + \frac{\log(a-b)}{3} = \frac{2}{3}$
Multiplying both sides by 6 gives:Nbsp;
$3\log(a+b) + 2\log(a-b) = 12$
Using the property $\log a^n = n \log a$, we rewrite this as:
$\log((a+b)^3(a-b)^2) = 12$
Taking the antilogarithm of both sides yields:
$(a+b)^3(a-b)^2 = 10^{12}$
Given $a>10 \ge b \ge c$, both $(a+b)^3$ and $(a-b)^2$ are positive integers.
To maximize $a$, we need to maximize both $(a+b)$ and $(a-b)$.
Through trial and error, we find that when $a = 17$ and $b = 10$, the equation $(a+b)^3(a-b)^2 = 10^{12}$ holds true.
Thus, the greatest possible integer value for $a$ is 17.