Question:medium

Find the value of: $\log 87600+\log 23100-8 =\ ?$

Show Hint

Write numbers in scientific form $a\times10^n$ and use $\log(ab)=\log a+\log b$ to cancel powers of $10$ quickly.
Updated On: Nov 25, 2025
  • $\log 8.76 + \log 2.31$
  • $\log 87.6 + \log 23.1$
  • $\log 876 + \log 231$
  • None of these
Hide Solution

The Correct Option is A

Solution and Explanation

\( \log 87600 = \log(8.76 \times 10^4) = \log 8.76 + 4 \);
\( \log 23100 = \log(2.31 \times 10^4) = \log 2.31 + 4 \).
Therefore, \( \log 87600 + \log 23100 - 8 = (\log 8.76 + 4) + (\log 2.31 + 4) - 8 \)
\( \Rightarrow \log 8.76 + \log 2.31 \). \( \boxed{\log 87600 + \log 23100 - 8 = \log 8.76 + \log 2.31} \)
Was this answer helpful?
0