Exams
Subjects
Classes
Login / Register
Home
Quantitative Aptitude
List of top Quantitative Aptitude Questions on Logarithms
If \(a\), \(b\), and \(c\) are positive real numbers such that \(a > 10 \ge b \ge c\) and\[ \frac{\log_8(a+b)}{\log_2 c} + \frac{\log_{27}(a-b)}{\log_3 c} = \frac{2}{3} \]then the greatest possible integer value of \(a\) is
CAT - 2024
CAT
Quantitative Aptitude
Logarithms
Let $x$ be a positive real number such that $4 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13$ , then the greatest integer not exceeding $x$. is
CAT - 2024
CAT
Quantitative Aptitude
Logarithms
The sum of all real values of $k$ for which $(\frac{1}{8})^k \times (\frac{1}{32768})^{\frac{4}{3}} = \frac{1}{8} \times (\frac{1}{32768})^{\frac{k}{3}}$ is
CAT - 2024
CAT
Quantitative Aptitude
Logarithms
X is a +ve real no, 4 log
10
(x) + 4log
100
(x) + 8 log
1000
(x) = 13, then the greatest integer not exceeding 'x'
CAT - 2024
CAT
Quantitative Aptitude
Logarithms
For a real number
\(x\)
, if
\(\frac{1}{2},\frac{log_3(2^x-9)}{log_34}\)
, and
\(\frac{log_5\bigg(2^x+\frac{17}{2}\bigg)}{log_54}\)
are in an arithmetic progression, then the common difference is
CAT - 2023
CAT
Quantitative Aptitude
Logarithms
For some positive real number
\(x\)
, if
\(log_{\sqrt 3}(x)+\frac{log_x(25)}{log_x(0.008)}=\frac{16}{3}\)
, then the value of
\(log_3(3x^2)\)
is
CAT - 2023
CAT
Quantitative Aptitude
Logarithms
If
\(x\)
and
\(y\)
are positive real numbers such that
\(log_x(x^2+12)=4\)
and
\(3\;log_yx=1\)
,then
\(x+y\)
equals
CAT - 2023
CAT
Quantitative Aptitude
Logarithms