Login / Register
  1. Home
  2. Quantitative Aptitude

Filters

Found 7 Questions

Set Default
Exams
Subjects
Topics

List of top Quantitative Aptitude Questions on Logarithms

If \(a\), \(b\), and \(c\) are positive real numbers such that \(a > 10 \ge b \ge c\) and\[ \frac{\log_8(a+b)}{\log_2 c} + \frac{\log_{27}(a-b)}{\log_3 c} = \frac{2}{3} \]then the greatest possible integer value of \(a\) is
  • CAT - 2024
  • CAT
  • Quantitative Aptitude
  • Logarithms
Let $x$ be a positive real number such that $4 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13$ , then the greatest integer not exceeding $x$. is
  • CAT - 2024
  • CAT
  • Quantitative Aptitude
  • Logarithms
The sum of all real values of $k$ for which $(\frac{1}{8})^k \times (\frac{1}{32768})^{\frac{4}{3}} = \frac{1}{8} \times (\frac{1}{32768})^{\frac{k}{3}}$ is
  • CAT - 2024
  • CAT
  • Quantitative Aptitude
  • Logarithms
X is a +ve real no, 4 log10 (x) + 4log 100 (x) + 8 log1000 (x) = 13, then the greatest integer not exceeding 'x'
  • CAT - 2024
  • CAT
  • Quantitative Aptitude
  • Logarithms
For a real number \(x\) , if \(\frac{1}{2},\frac{log_3(2^x-9)}{log_34}\), and \(\frac{log_5\bigg(2^x+\frac{17}{2}\bigg)}{log_54}\) are in an arithmetic progression, then the common difference is
  • CAT - 2023
  • CAT
  • Quantitative Aptitude
  • Logarithms
For some positive real number \(x\) , if  \(log_{\sqrt 3}(x)+\frac{log_x(25)}{log_x(0.008)}=\frac{16}{3}\), then the value of \(log_3(3x^2)\) is 
  • CAT - 2023
  • CAT
  • Quantitative Aptitude
  • Logarithms
If \(x\) and \(y\) are positive real numbers such that \(log_x(x^2+12)=4\) and \(3\;log_yx=1\),then \(x+y\) equals
  • CAT - 2023
  • CAT
  • Quantitative Aptitude
  • Logarithms
contact us
terms & conditions
Privacy & Policy
© 2025 Zollege Internet Private Limited