Exams
Subjects
Classes
Login / Register
Home
Mathematics
List of top Mathematics Questions on Coordinate Geometry
Let \( x - y = 0 \) and \( x + y = 1 \) be two perpendicular diameters of a circle of radius \( R \). The circle will pass through the origin if \( R \) is equal to:
WBJEE - 2025
WBJEE
Mathematics
Coordinate Geometry
The number of common tangents to the circles \( x^2 + y^2 - 4x - 6y - 12 = 0 \) and \( x^2 + y^2 + 6x + 18y + 26 = 0 \) is:
WBJEE - 2025
WBJEE
Mathematics
Coordinate Geometry
The line \( y - \sqrt{3}x + 3 = 0 \) cuts the parabola \( y^2 = x + 2 \) at the points \( P \) and \( Q \). If the co-ordinates of the point \( X \) are \( (\sqrt{3}, 0) \), then the value of \( XP \cdot XQ \) is:
WBJEE - 2025
WBJEE
Mathematics
Coordinate Geometry
The line parallel to the x-axis passing through the intersection of the lines \( ax + 2by + 3b = 0 \) and \( bx - 2ay - 3a = 0 \) where \( (a, b) \neq (0, 0) \) is:
WBJEE - 2025
WBJEE
Mathematics
Coordinate Geometry
Consider three points \( P(\cos \alpha, \sin \beta) \), \( Q(\sin \alpha, \cos \beta) \) and \( R(0, 0) \), where \( 0<\alpha, \beta<\frac{\pi}{4} \). Then:
WBJEE - 2025
WBJEE
Mathematics
Coordinate Geometry
Given that:
\[ \cot \left( \frac{A + B}{2} \right) \cdot \tan \left( \frac{A - B}{2} \right) \]
and the equation involving coordinates:
\[ \frac{x}{2} + \frac{y}{3} + \frac{2}{6} - 1 = 0 \]
Find the area of \( \Delta ABC = 2 \).
MHT CET - 2025
MHT CET
Mathematics
Coordinate Geometry
Given that \( \cot \left( \frac{A+B}{2} \right) \cdot \tan \left( \frac{A-B}{2} \right) = \), and the equation \( \frac{x}{2} + \frac{y}{3} + \frac{2}{6} - 1 = 0 \), find the area of \( \Delta ABC = 2 \).
MHT CET - 2025
MHT CET
Mathematics
Coordinate Geometry