Question:medium

The line \( y - \sqrt{3}x + 3 = 0 \) cuts the parabola \( y^2 = x + 2 \) at the points \( P \) and \( Q \). If the co-ordinates of the point \( X \) are \( (\sqrt{3}, 0) \), then the value of \( XP \cdot XQ \) is:

Show Hint

When dealing with distances between points and intersections of curves, forming a quadratic equation in one variable often simplifies the problem using Vieta's formulas.
Updated On: Nov 28, 2025
  • \( \frac{4(2 + \sqrt{3})}{3} \)
  • \( \frac{4(2 - \sqrt{3})}{2} \)
  • \( \frac{5(2 + \sqrt{3})}{3} \)
  • \( \frac{5(2 - \sqrt{3})}{3} \)
Hide Solution

The Correct Option is A

Solution and Explanation


Step 1: Determine the coordinates of intersection points \( P \) and \( Q \).
\nThe line's equation is \( y = \sqrt{3}x - 3 \).
\nThe parabola's equation is \( y^2 = x + 2 \).
\nSubstitute the line's \( y \) expression into the parabola's equation:
\n\[\n(\sqrt{3}x - 3)^2 = x + 2\n\]\n\[\n3x^2 - 6\sqrt{3}x + 9 = x + 2\n\]\n\[\n3x^2 - (6\sqrt{3} + 1)x + 7 = 0\n\]\nThis is a quadratic equation in \( x \). The roots, \( x_1 \) and \( x_2 \), are the x-coordinates of \( P \) and \( Q \).\n\nUsing Vieta's formulas:\n\[\nx_1 + x_2 = \frac{6\sqrt{3} + 1}{3}\n\]\n\[\nx_1 x_2 = \frac{7}{3}\n\]\n\nThe corresponding y-coordinates are \( y_1 = \sqrt{3}x_1 - 3 \) and \( y_2 = \sqrt{3}x_2 - 3 \).
\nThus, \( P \) and \( Q \) are \( (x_1, \sqrt{3}x_1 - 3) \) and \( (x_2, \sqrt{3}x_2 - 3) \).
\n\n
Step 2: Compute the distances \( XP \) and \( XQ \).
\nPoint \( X \) has coordinates \( (\sqrt{3}, 0) \).\n\[\nXP^2 = (x_1 - \sqrt{3})^2 + (\sqrt{3}x_1 - 3 - 0)^2 = (x_1 - \sqrt{3})^2 + (\sqrt{3}(x_1 - \sqrt{3}))^2\n\]\n\[\nXP^2 = (x_1 - \sqrt{3})^2 + 3(x_1 - \sqrt{3})^2 = 4(x_1 - \sqrt{3})^2\n\]\n\[\nXP = 2|x_1 - \sqrt{3}|\n\]\nSimilarly,\n\[\nXQ^2 = (x_2 - \sqrt{3})^2 + (\sqrt{3}x_2 - 3 - 0)^2 = (x_2 - \sqrt{3})^2 + (\sqrt{3}(x_2 - \sqrt{3}))^2\n\]\n\[\nXQ^2 = (x_2 - \sqrt{3})^2 + 3(x_2 - \sqrt{3})^2 = 4(x_2 - \sqrt{3})^2\n\]\n\[\nXQ = 2|x_2 - \sqrt{3}|\n\]\n\n
Step 3: Calculate the product \( XP \cdot XQ \).
\n\[\nXP \cdot XQ = 4 |(x_1 - \sqrt{3})(x_2 - \sqrt{3})| = 4 |x_1 x_2 - \sqrt{3}(x_1 + x_2) + 3|\n\]\nSubstitute \( x_1 + x_2 \) and \( x_1 x_2 \) from Step 1:\n\[\nXP \cdot XQ = 4 \left| \frac{7}{3} - \sqrt{3}\left(\frac{6\sqrt{3} + 1}{3}\right) + 3 \right|\n\]\n\[\nXP \cdot XQ = 4 \left| \frac{7}{3} - \frac{18 + \sqrt{3}}{3} + \frac{9}{3} \right|\n\]\n\[\nXP \cdot XQ = 4 \left| \frac{7 - 18 - \sqrt{3} + 9}{3} \right|\n\]\n\[\nXP \cdot XQ = 4 \left| \frac{-2 - \sqrt{3}}{3} \right| = 4 \left( \frac{2 + \sqrt{3}}{3} \right) = \frac{4(2 + \sqrt{3})}{3}\n\]
Was this answer helpful?
0