Login / Register
  1. Home
  2. Mathematics

Filters

Found 5 Questions

Set Default
Exams
Subjects
Topics

List of top Mathematics Questions on limits and derivatives

Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.

  • BITSAT - 2024
  • BITSAT
  • Mathematics
  • limits and derivatives

If \( f(x) \) is defined as follows: 
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \) 
 

  • BITSAT - 2024
  • BITSAT
  • Mathematics
  • limits and derivatives
Let \( f(x) = x^2 \log(\cos x) \log(1 + x) \) for \( x \neq 0 \), and \( f(0) = 0 \). Determine the behavior of \( f(x) \) at \( x = 0 \).
  • BITSAT - 2024
  • BITSAT
  • Mathematics
  • limits and derivatives
Let \( f \) be the function defined by:
\[ f(x) = \begin{cases} \frac{x^2 - 1}{x^2 - 2|x-1| - 1}, & \text{if } x \neq 1, \\ \frac{1}{2}, & \text{if } x = 1. \end{cases} \] The function is continuous at:
  • BITSAT - 2024
  • BITSAT
  • Mathematics
  • limits and derivatives
Let the function \( g: (-\infty, 0) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) be given by \( g(u) = 2 \tan^{-1}(e^u) - \frac{\pi}{2} \). Determine the properties of \( g \).
  • BITSAT - 2024
  • BITSAT
  • Mathematics
  • limits and derivatives
contact us
terms & conditions
Privacy & Policy
© 2025 Zollege Internet Private Limited