Step 1: {Analyze evenness or oddness}
\[ g(-u) = 2 \tan^{-1}(e^{-u}) - \frac{\pi}{2} \] \[ = 2 \left( \frac{\pi}{2} - \tan^{-1}(e^u) \right) - \frac{\pi}{2} \] \[ = \pi - 2 \tan^{-1}(e^u) - \frac{\pi}{2} = -2 \tan^{-1}(e^u) + \frac{\pi}{2} \] \[ = -(2 \tan^{-1}(e^u) - \frac{\pi}{2}) = -g(u) \] Therefore, \( g \) is an odd function.
Step 2: {Verify increasing nature}
The derivative \( g'(u) = 2\frac{1}{1+e^{2u}}e^u>0 \) for all \( u \), confirming that \( g \) is strictly increasing on \( (-\infty, \infty) \).
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)