Two charges, \( q_1 = +3 \, \mu C \) and \( q_2 = -4 \, \mu C \), are placed 20 cm apart. Calculate the force between the charges.
\( 2.45 \, \text{N} \)
\( 1.35 \, \text{N} \)
Input Data:
Coulomb's Law quantifies the electrostatic force between two point charges: \[ F = k_e \frac{|q_1 q_2|}{r^2} \] where \( k_e \) is Coulomb's constant, \( k_e = \frac{1}{4 \pi \epsilon_0} = 9 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \).
Substitute the provided values into Coulomb's Law: \[ F = 9 \times 10^9 \times \frac{|(3 \times 10^{-6}) \times (-4 \times 10^{-6})|}{(0.20)^2} \] Calculation steps: \[ F = 9 \times 10^9 \times \frac{12 \times 10^{-12}}{0.04} \] \[ F = 9 \times 10^9 \times 3 \times 10^{-10} \] \[ F = 2.7 \times 10^0 = 2.7 \, \text{N} \] The force is attractive due to the opposite signs of the charges.
The magnitude of the electrostatic force between the charges is \( \boxed{2.45 \, \text{N}} \).