Question:medium

Three resistors of $ 2\, \Omega $, $ 3\, \Omega $, and $ 6\, \Omega $ are connected in parallel. What is the equivalent resistance of the combination?

Show Hint

Key Fact: In parallel, \( \frac{1}{R_{\text{eq}}} = \sum \frac{1}{R_i} \)
Updated On: Nov 26, 2025
  • \( 1\, \Omega \)
  • \( 2\, \Omega \)
  • \( 3\, \Omega \)
  • \( 4\, \Omega \)
Hide Solution

The Correct Option is A

Solution and Explanation

The equivalent resistance \( R_{\text{eq}} \) for resistors in parallel is calculated using the formula:

\[\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\]

Given \( R_1 = 2\, \Omega \), \( R_2 = 3\, \Omega \), and \( R_3 = 6\, \Omega \). Substitute these values:

\[\frac{1}{R_{\text{eq}}} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}\]

With a common denominator of 6:

\[\frac{1}{R_{\text{eq}}} = \frac{3}{6} + \frac{2}{6} + \frac{1}{6}\]

Summing the fractions:

\[\frac{1}{R_{\text{eq}}} = \frac{6}{6} = 1\]

Solving for \( R_{\text{eq}} \):

\[R_{\text{eq}} = 1\, \Omega\]

The equivalent resistance of this parallel combination is \( 1\, \Omega \).

Was this answer helpful?
1