281 J
Step 1: Identify the formula
The formula for work done during a reversible isothermal expansion of an ideal gas is:
W = -nRT ln(V₂/V₁)
Where:
Step 2: Calculate the number of moles (n)
Using the ideal gas law, PV = nRT, with P₁ = 2 atm, V₁ = 2 L, T = 300 K, and R = 0.08206 L·atm/mol·K:
n = (P₁V₁)/(RT)
n = (2 atm × 2 L)/(0.08206 L·atm/mol·K × 300 K)
n = 4 / 24.618 ≈ 0.1625 mol
Step 3: Calculate the volume ratio
V₂/V₁ = 4 L / 2 L = 2
ln(V₂/V₁) = ln(2) ≈ 0.6931
Step 4: Compute the work done
Using R = 8.314 J/mol·K for work in joules:
W = -(0.1625 mol) × (8.314 J/mol·K) × (300 K) × ln(2)
W = -(0.1625) × (8.314) × (300) × (0.6931)
W ≈ -280.913 J
Step 5: Interpret the result
The negative sign indicates work done by the gas. The magnitude of the work done by the gas is approximately:
|W| ≈ 280.91 J
Rounded to three significant figures: 281 J
Step 6: Verification with alternative units
Using atm·L units:
nRT = (0.1625 mol) × (0.08206 L·atm/mol·K) × (300 K) ≈ 4.001 atm·L
W = -4.001 × ln(2) ≈ -4.001 × 0.6931 ≈ -2.773 atm·L
Converting to joules (1 atm·L = 101.325 J):
W ≈ -2.773 × 101.325 ≈ -280.97 J
The magnitude is confirmed: ≈ 281 J
Final Answer: The work done by the gas is approximately 281 J.