\( 4 \times 10^5 \, \text{J} \)
\( 6 \times 10^5 \, \text{J} \)
Given:
Conversion factor: 1 atm = \( 1.013 \times 10^5 \, \text{Pa} \)
Pressure in pascals: \( P = 2 \, \text{atm} \times 1.013 \times 10^5 \, \text{Pa/atm} = 2.026 \times 10^5 \, \text{Pa} \)
Formula for work: \( W = P \Delta V = P (V_2 - V_1) \)
Volume change: \( \Delta V = 3 \, \text{m}^3 - 1 \, \text{m}^3 = 2 \, \text{m}^3 \)
Work done: \( W = (2.026 \times 10^5 \, \text{Pa}) \times (2 \, \text{m}^3) = 4.052 \times 10^5 \, \text{J} \)
The work performed by the gas is \( \boxed{4 \times 10^5 \, \text{J}} \).