Question:medium

The value of $ \sin^2 30^\circ + \cos^2 60^\circ $ is:

Show Hint

Remember the special angle values: \( \sin 30^\circ = \frac{1}{2} \), \( \cos 60^\circ = \frac{1}{2} \). Squaring and adding these values carefully helps in trigonometric computations.
Updated On: Nov 26, 2025
  • \( \frac{1}{2} \)
  • 1
  • \( \frac{3}{4} \)
  • \( \frac{1}{4} \)
Hide Solution

The Correct Option is A

Solution and Explanation

The value of \( \sin^2 30^\circ + \cos^2 60^\circ \) is determined by calculating each term individually. We have \( \sin 30^\circ = \frac{1}{2} \) and \( \cos 60^\circ = \frac{1}{2} \). Squaring these gives \( \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \). The sum is \( \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \). Consequently, the result is \( \frac{1}{2} \).

Was this answer helpful?
0