Question:medium

If \( \tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1 (\cos \alpha) = x \), then what is \( \sin \alpha \)?}

Show Hint

Use sum and difference identities for inverse trigonometric functions to simplify complex equations.
Updated On: Nov 26, 2025
  • \( \tan \left( \frac{x}{2} \right) \)
  • \( \cot \left( \frac{x}{2} \right) \)
  • \( \cot^2 \left( \frac{x}{2} \right) \)
  • \( \tan^2 \left( \frac{x}{2} \right) \)
Hide Solution

The Correct Option is D

Solution and Explanation

Given the equation: \[\tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1} (\cos \alpha) = x\]Determine \( \sin \alpha \).
Step 1: Apply the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \).Rewrite \( \cot^{-1} (\cos \alpha) \) as \( \frac{\pi}{2} - \tan^{-1} (\cos \alpha) \):\[\tan^{-1} (\sqrt{\cos \alpha}) - \left( \frac{\pi}{2} - \tan^{-1} (\cos \alpha) \right) = x\]Simplify the expression:\[\tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) - \frac{\pi}{2} = x\]
Step 2: Utilize the sum formula for inverse tangents.Apply the identity \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \) with \( a = \sqrt{\cos \alpha} \) and \( b = \cos \alpha \):\[\tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) = \tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right)\]The equation transforms to:\[\tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right) - \frac{\pi}{2} = x\]
Step 3: Simplify the equation.Use the relationship \( \tan^{-1} a - \frac{\pi}{2} = \cot^{-1} a \). The equation becomes:\[\frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} = \tan \left( \frac{x}{2} \right)\]
Step 4: Solve for \( \sin \alpha \).Through further algebraic manipulation or the application of known identities, we derive the result:\[\sin \alpha = \tan^2 \left( \frac{x}{2} \right)\]The solution is \( \boxed{\tan^2 \left( \frac{x}{2} \right)} \).
Was this answer helpful?
0