The activation energy \(E_a\) is determined using the Arrhenius equation in its logarithmic form: \(\ln\left(\frac{k_2}{k_1}\right)=-\frac{E_a}{R}\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\).
Given that the rate constant \(k\) doubles (\(\frac{k_2}{k_1}=2\)) as the temperature increases from \(T_1=300\,K\) to \(T_2=310\,K\), we substitute these values into the equation: \(\ln(2)=-\frac{E_a}{8.314}\left(\frac{1}{310}-\frac{1}{300}\right)\).
The temperature difference is calculated as \(\frac{1}{310}-\frac{1}{300}=\frac{300-310}{310\times300}=-\frac{10}{93,000}\approx-0.0001075\).
Substituting \(\ln(2)\approx0.693\) yields:\[0.693=-\frac{E_a}{8.314}\times-0.0001075\].
Solving for \(E_a\) gives:\[E_a=\frac{0.693\times8.314}{0.0001075}\approx53,000\ J/mol=53\ kJ/mol\].
Therefore, the activation energy \(E_a\) for the reaction is \({53\ kJ/mol}\).