For a dark fringe in reflected light, the condition is:
\[ 2\mu t \cos r = \left(m + \frac{1}{2}\right)\lambda, \]
where:
With \(m = 0\):
\[ 2\mu t \cos r = \frac{\lambda}{2}. \]
Solving for \(t\):
\[ t = \frac{\lambda}{4\mu \cos r}. \]
Substituting values:
\[ t = \frac{6 \times 10^{-7}}{4 \cdot 1.5 \cdot \cos 60^\circ}. \]
Since \(\cos 60^\circ = \frac{1}{2}\):
\[ t = \frac{6 \times 10^{-7}}{4 \cdot 1.5 \cdot \frac{1}{2}} = \frac{6 \times 10^{-7}}{3} = 2 \times 10^{-7} \, \text{m}. \]
Therefore:
\[ t = 2 \times 10^{-7} \, \text{m}. \]
Conclusion: The smallest thickness for a dark fringe is:
\[ 2 \times 10^{-7} \, \text{m}. \]