The scalar triple product \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) is calculated as \( |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| \).
Step 1: Calculate the cross product \( \mathbf{b} \times \mathbf{c} \), and then compute the dot product with \( \mathbf{a} \). The scalar triple product can be represented by the determinant: \[ [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \left| \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix} \right| \] Evaluating this determinant yields: \[ = 1 + x - y - x^2 + x^2 - y = 1 \] Therefore, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = 1 \). This value is independent of \( x \) and \( y \).