Question:medium

Let \( \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \). Then, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) depends on:}

Show Hint

When working with scalar triple products, simplify the determinant step by step and carefully analyze the dependence on variables.
Updated On: Nov 26, 2025
  • only \( y \)
  • only \( x \)
  • both \( x \) and \( y \)
  • neither \( x \) nor \( y \)
Hide Solution

The Correct Option is D

Solution and Explanation

The scalar triple product \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) is calculated as \( |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| \).
Step 1: Calculate the cross product \( \mathbf{b} \times \mathbf{c} \), and then compute the dot product with \( \mathbf{a} \). The scalar triple product can be represented by the determinant: \[ [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \left| \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix} \right| \] Evaluating this determinant yields: \[ = 1 + x - y - x^2 + x^2 - y = 1 \] Therefore, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = 1 \). This value is independent of \( x \) and \( y \). 
 

Was this answer helpful?
0