The volume \( V \) of a tetrahedron with vertices \( A(x_1, y_1, z_1), B(x_2, y_2, z_2), C(x_3, y_3, z_3), \) and \( D(x_4, y_4, z_4) \) is calculated using the formula:
\[
V = \frac{1}{6} \left| \text{det} \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\
x_2 & y_2 & z_2 & 1 \\
x_3 & y_3 & z_3 & 1 \\
x_4 & y_4 & z_4 & 1
\end{bmatrix} \right|
\]
Given the vertices \( A(1, 2, 3), B(-3, -1, 1), C(2, 1, 3), \) and \( D(-1, 2, x) \), the volume formula becomes:
\[
V = \frac{1}{6} \left| \text{det} \begin{bmatrix} 1 & 2 & 3 & 1 \\
-3 & -1 & 1 & 1 \\
2 & 1 & 3 & 1 \\
-1 & 2 & x & 1
\end{bmatrix} \right| = \frac{11}{6}
\]
By calculating the determinant of this matrix and solving for \( x \), we find \( x = 3 \).