Question:medium

If \( z = 2(\cos 60^\circ + i \sin 60^\circ) \), find the value of \( z^3 \).

Show Hint

To compute powers of complex numbers in trigonometric form, use De Moivre's theorem. Verify carefully by converting to rectangular form if the result seems inconsistent with options.
Updated On: Nov 26, 2025
  • -8
  • -10
  • -2
  • -22
Hide Solution

The Correct Option is A

Solution and Explanation

Provided: \( z = 2(\cos 60^\circ + i \sin 60^\circ) = 1 + i \sqrt{3} \). Applying binomial expansion: \( z^3 = (1 + i \sqrt{3})^3 \). First, \( z^2 = (1 + i \sqrt{3})^2 = 1 + 2 i \sqrt{3} + (i \sqrt{3})^2 = 1 + 2 i \sqrt{3} - 3 = -2 + 2 i \sqrt{3} \). Next, \( z^3 = z^2 \times z = (-2 + 2 i \sqrt{3})(1 + i \sqrt{3}) = -2 - 2 i \sqrt{3} + 2 i \sqrt{3} + 2 (i \sqrt{3})^2 = -2 + 0 + 2(-3) = -2 - 6 = -8 \). Therefore, \( z^3 = -8 \).
Was this answer helpful?
1