Step 1: {Given that \( |z_1| = |z_2| = \dots = |z_n| = 1 \)}
It is given that \( |z_1| = |z_2| = \dots = |z_n| = 1 \).
Step 2: {Write the sum of complex numbers}
The sum of the complex numbers is given by: \[ z_1 + z_2 + \dots + z_n = z_1 + z_2 + \dots + z_n. \]
Step 3: {Conclusion}
The magnitude of the sum, considering the properties of magnitudes, is: \[ |z_1 + z_2 + \dots + z_n| = \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}. \]
Step 4: {Verify the result}
Therefore, the result is \( \frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|} \), which corresponds to option (C).