Question:medium

If \( y = \tan^{-1}\left( \frac{\sqrt{x} - x}{1 + x^{3/2}} \right) \), then \( y'(1) \) is equal to:

Show Hint

To differentiate inverse trigonometric functions, remember the chain rule and handle the rational expressions carefully.
Updated On: Nov 26, 2025
  • 0
  • \( \frac{1}{2} \)
  • -1
  • \(-\frac{1}{4}\)
Hide Solution

The Correct Option is D

Solution and Explanation

Step 1: Apply the inverse tangent identity to rewrite the equation.
Given \( y = \tan^{-1}\left(\frac{\sqrt{x} - x}{1 + \sqrt{x} \cdot x}\right) \).Using the identity \[ \tan^{-1}\left(\frac{a - b}{1 + ab}\right) = \tan^{-1}a - \tan^{-1}b \]we rewrite the equation as:\[ y = \tan^{-1}(\sqrt{x}) - \tan^{-1}(x) \]Step 2: Differentiate \( y \) with respect to \( x \)
Differentiating both sides yields:\[ \frac{dy}{dx} = \frac{d}{dx} \left( \tan^{-1}(\sqrt{x}) - \tan^{-1}(x) \right) \]\[ y'(x) = \frac{d}{dx} \tan^{-1}(\sqrt{x}) - \frac{d}{dx} \tan^{-1}(x) \]Applying the derivative rule \( \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \frac{du}{dx} \):\[ y'(x) = \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{d}{dx}(\sqrt{x}) - \frac{1}{1 + x^2} \]\[ y'(x) = \frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{1 + x^2} \]Step 3: Calculate \( y'(1) \)
Substitute \( x = 1 \) into the derivative expression:\[ y'(1) = \frac{1}{1 + 1} \cdot \frac{1}{2\sqrt{1}} - \frac{1}{1 + 1^2} \]\[ y'(1) = \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \]\[ y'(1) = \frac{1}{4} - \frac{1}{2} \]\[ y'(1) = \frac{1}{4} - \frac{2}{4} \]\[ y'(1) = -\frac{1}{4} \]Thus, \( y'(1) = -\frac{1}{4} \).
Was this answer helpful?
0