\[ The curves are given by \( y = ax^2 \) and \( x = ay^2 \). \]
\[ When \( x=0 \), \( y=0 \). When \( x=\frac{1}{a} \), \( y=\frac{1}{a} \). \]
\[ The points of intersection for \( y=ax^2 \) and \( x=ay^2 \) are \( (0,0) \) and \( \left(\frac{1}{a}, \frac{1}{a}\right) \). \]
\[ The required area is given by: \]
\[ A = \int_{x=a}^{x=b} [f_2(x) - f_1(x)] \, dx \]
\[ Given that the area is 3, we have: \]
\[ 3 = \int_{0}^{1/a} \left(\frac{\sqrt{x}}{\sqrt{a}} - ax^2\right) \, dx \]
\[ Evaluating the integral: \]
\[ 3 = \left[\frac{2}{3\sqrt{a}} x^{3/2} - \frac{ax^3}{3}\right]_0^{1/a} \]
\[ Substituting the limits: \]
\[ 3 = \frac{2}{3\sqrt{a}} \times \frac{1}{a\sqrt{a}} - \frac{a}{3} \times \frac{1}{a^3} \]
\[ Simplifying the expression: \]
\[ 3 = \frac{2}{3a^2} - \frac{1}{3a^2} \]
\[ 3 = \frac{1}{3a^2} \]
\[ Rearranging the equation: \]
\[ 9a^2 = 1 \]
\[ Solving for \( a^2 \): \]
\[ a^2 = \frac{1}{9} \Rightarrow a = \frac{1}{3} \]
\[ The value of \( a \) is \( \frac{1}{3} \). \]