The expected value \( E(X) \) is computed as: \[ E(X) = \sum_x x \cdot P(X = x). \]
Step 1: Total probability verification
The sum of all probabilities must equal 1: \[ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{5}{16} + \frac{k}{48} + \frac{1}{4} + \frac{1}{4}. \]
Setting the sum to 1 and substituting \( \frac{1}{4} = \frac{12}{48} \): \[ \frac{5}{16} + \frac{k}{48} + \frac{12}{48} + \frac{12}{48} = 1. \]
Converting \( \frac{5}{16} \) to a fraction with a denominator of 48: \[ \frac{5}{16} = \frac{15}{48}. \]
The equation becomes: \[ \frac{15}{48} + \frac{k}{48} + \frac{12}{48} + \frac{12}{48} = 1. \]
Combining terms: \[ \frac{15 + k + 12 + 12}{48} = 1. \]
Simplifying yields: \[ \frac{39 + k}{48} = 1 \quad \implies \quad 39 + k = 48 \quad \implies \quad k = 9. \]
Step 2: Determination of \( P(X = 1) \)
Substituting \( k = 9 \) into the probability expression: \[ P(X = 1) = \frac{k \cdot 1}{48} = \frac{9}{48}. \]
Step 3: Calculation of \( E(X) \)
Plugging the probabilities into the expected value formula: \[ E(X) = 0 \cdot \frac{5}{16} + 1 \cdot \frac{9}{48} + 2 \cdot \frac{12}{48} + 3 \cdot \frac{12}{48}. \]
Performing the calculations: \[ E(X) = 0 + \frac{9}{48} + \frac{24}{48} + \frac{36}{48}. \]
Summing the fractions: \[ E(X) = \frac{9 + 24 + 36}{48} = \frac{69}{48}. \]
The final numerical value is: \[ E(X) = 1.4375. \]
Final Answer: \[ \boxed{1.4375} \]
If a random variable X has the following probability distribution values:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(X) | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 |
Then P(X ≥ 6) has the value: