Question:medium

If \( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}, \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \) and \( \mathbf{c} = 3\hat{i} + \hat{j} \) are the vectors such that \( \mathbf{a} + \lambda \mathbf{b} \) is perpendicular to \( \mathbf{c} \), then the value of \( \lambda \) is:

Show Hint

In vector problems involving dot products and perpendicular vectors, remember that the dot product of two perpendicular vectors is zero. Use this property to solve the problem step by step.
Updated On: Nov 26, 2025
  • 6
  • 8
     

  • -6
     

  • -8
Hide Solution

The Correct Option is B

Solution and Explanation

Given vectors:

\( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} \)

\( \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \)

\( \mathbf{c} = 3\hat{i} + \hat{j} \)

Let \( \mathbf{r} = \mathbf{a} + \lambda \mathbf{b} \)

\( \mathbf{r} = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k} \)

Since \( \mathbf{r} \) is perpendicular to \( \mathbf{c} \), their dot product is zero:

\( \mathbf{r} \cdot \mathbf{c} = 0 \)

Calculate the dot product:

\( [(2 - \lambda) \cdot 3] + [(2 + 2\lambda) \cdot 1] + [(3 + \lambda) \cdot 0] = 0 \)

Simplify the equation:

\( 3(2 - \lambda) + (2 + 2\lambda) = 0 \)

\( 6 - 3\lambda + 2 + 2\lambda = 0 \)

\( 8 - \lambda = 0 \)

Solving for \( \lambda \):

\( \lambda = 8 \)

Final Answer:

\( \boxed{\lambda = 8} \)

Was this answer helpful?
1