Question:medium

Find the value of $ \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ $.

Show Hint

Use trigonometric addition formulas to simplify expressions involving sums of products of sines and cosines.
Updated On: Nov 26, 2025
  • 1
  • \(\frac{\sqrt{3}}{2}\)
  • \(\frac{1}{2}\)
  • \(\frac{\sqrt{2}}{2}\)
Hide Solution

The Correct Option is A

Solution and Explanation

The expression \( \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ \) simplifies via the sine addition formula:
\[\sin(A + B) = \sin A \cos B + \cos A \sin B\]
Setting \( A = 75^\circ \) and \( B = 15^\circ \) yields:
\[\sin(75^\circ + 15^\circ)\]
This simplifies to:
\[\sin 90^\circ = 1\]
Consequently, \( \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ \) equals \( 1 \).
Was this answer helpful?
0