The final temperature of an ideal gas during adiabatic expansion is determined using the adiabatic process relation:
\( TV^{\gamma-1} = \text{constant} \)
For an initial state ( \( T_1 = T \), \( V_1 = V \) ) and a final state ( \( T_2 \), \( V_2 = 2V \) ), the relation is:
\( TV^{\gamma-1} = T_2(2V)^{\gamma-1} \)
Simplification yields:
\( T V^{\gamma-1} = T_2 \cdot 2^{\gamma-1} \cdot V^{\gamma-1} \)
Canceling \( V^{\gamma-1} \) from both sides gives:
\( T = T_2 \cdot 2^{\gamma-1} \)
Solving for \( T_2 \):
\( T_2 = \frac{T}{2^{\gamma-1}} \)
Given \( \gamma = \frac{5}{3} \), calculate \( \gamma-1 \):
\( \gamma-1 = \frac{5}{3} - 1 = \frac{2}{3} \)
Substituting this value to find \( T_2 \):
\( T_2 = \frac{T}{2^{2/3}} \)
The final temperature, \( T_2 \), is \( \frac{T}{2^{2/3}} \).