Step 1: Alpha ( \( \alpha \) ) Decay Impact
An alpha particle (\( \alpha \)) possesses a mass number of 4 and an atomic number of 2.
Following the alpha decay of element \( X \):
$$ {^{290}_{82}X -> ^{286}_{80}Y + ^{4}_{2}\alpha} $$
The resultant nucleus \( Y \) exhibits:
Mass number = \( 290 - 4 = 286 \)
Atomic number = \( 82 - 2 = 80 \)
Step 2: Positron (\( e^+ \)) Emission Impact
Positron emission (\( \beta^+ \)) reduces the atomic number by 1, maintaining the mass number:
$$ {^{286}_{80}Y -> ^{286}_{79}Z + e^+} $$
Nucleus \( Z \) has the following properties:
Mass number = 286 (constant)
Atomic number = \( 80 - 1 = 79 \)
Step 3: Beta-Minus (\( \beta^- \)) Decay Impact
Beta-minus (\( \beta^- \)) emission elevates the atomic number by 1, without altering the mass number:
$$ {^{286}_{79}Z -> ^{286}_{80}P + \beta^-} $$
Nucleus \( P \) has the following properties:
Mass number = 286 (constant)
Atomic number = \( 79 + 1 = 80 \)
Step 4: Electron Capture (\( e^- \)) Impact
Electron capture reduces the atomic number by 1, while the mass number remains constant:
$$ {^{286}_{80}P + e^- -> ^{286}_{81}Q} $$
Nucleus \( Q \) has the following properties:
Mass number = 286 (constant)
Atomic number = \( 80 + 1 = 81 \)
Conclusion
The final product \( Q \) exhibits a mass number of 286 and an atomic number of 81, aligning with option (4).