\(\frac{4}{\pi} \, \text{m/min} \)
\(4\pi \, \text{m/min} \)
The formula for the volume of a cylinder is:
\( V = \pi r^2 h \)
Differentiating with respect to time \( t \) yields:
\( \frac{dV}{dt} = \pi r^2 \frac{dh}{dt} \)
The provided information is:
\( \frac{dV}{dt} = 36 \, \text{m}^3/\text{min}, \quad r = 3 \, \text{m} \)
Substituting the given values into the equation results in:
\( 36 = \pi (3)^2 \frac{dh}{dt} = 9\pi \frac{dh}{dt} \)
Solving for \( \frac{dh}{dt} \):
\( \frac{dh}{dt} = \frac{36}{9\pi} = \frac{4}{\pi} \)
Result:
\( \boxed{\frac{4}{\pi} \, \text{m/min}} \)