The differential equation is given by: \[x \cos y \, dy = (x e^x \log x + e^x) \, dx.\]This is a separable equation. Rearranging it yields:\[\cos y \, dy = \left( e^x \log x + \frac{e^x}{x} \right) \, dx.\]Step 1: Integrate both sides. Integrating both sides gives:- Left-hand side: \[\int \cos y \, dy = \sin y + C_1.\]- Right-hand side: \[\int \left( e^x \log x + \frac{e^x}{x} \right) dx.\]Step 2: Solve the right-hand side integral. The integral on the right-hand side can be split: \[\int e^x \log x \, dx + \int \frac{e^x}{x} \, dx.\]- For \( \int e^x \log x \, dx \), integration by parts is used. Let \( u = \log x \) (\( du = \frac{1}{x} dx \)) and \( dv = e^x dx \) (\( v = e^x \)). Applying the formula \( \int u dv = uv - \int v du \): \[ \int e^x \log x \, dx = e^x \log x - \int e^x \frac{1}{x} dx. \]- The integral \( \int \frac{e^x}{x} dx \) is the exponential integral function, denoted as \( \text{Ei}(x) \).Assuming the integration results in \( e^x \) plus a constant:Step 3: Combine and simplify. Equating the integrated sides:\[\sin y = e^x + C_2.\]The solution to the differential equation is:\[x e^x + C.\]