This problem applies Kohlrausch's Law of independent migration of ions. This law states that the limiting molar conductivity of an electrolyte (\(\Lambda_m^0\)) equals the sum of the limiting ionic conductivities (\(\lambda^0\)) of its ions. We'll use the provided values for strong electrolytes to find the limiting molar conductivity of the weak electrolyte NH₄OH.
We aim to find \(\Lambda_m^0(NH_4OH)\). According to Kohlrausch's Law:
\(\Lambda_m^0(NH_4OH) = \lambda^0(NH_4^+) + \lambda^0(OH^-)\)
Given:
\(\Lambda_m^0(Ba(OH)_2) = \lambda^0(Ba^{2+}) + 2\lambda^0(OH^-) = 523.28\)
\(\Lambda_m^0(BaCl_2) = \lambda^0(Ba^{2+}) + 2\lambda^0(Cl^-) = 280.0\)
\(\Lambda_m^0(NH_4Cl) = \lambda^0(NH_4^+) + \lambda^0(Cl^-) = 129.8\)
Our goal is to combine these equations to get \(\Lambda_m^0(NH_4OH)\). We need one \(\lambda^0(NH_4^+)\) and one \(\lambda^0(OH^-)\).
- We can get \(\lambda^0(NH_4^+)\) from the third equation.
- We can get \(\lambda^0(OH^-)\) from the first equation, but it includes \(\lambda^0(Ba^{2+})\).
- We must cancel out \(\lambda^0(Cl^-)\) and \(\lambda^0(Ba^{2+})\).
Consider the combination: \(\Lambda_m^0(NH_4Cl) + (1/2)\Lambda_m^0(Ba(OH)_2) - (1/2)\Lambda_m^0(BaCl_2)\)
= \([\lambda^0(NH_4^+) + \lambda^0(Cl^-)] + (1/2)[\lambda^0(Ba^{2+}) + 2\lambda^0(OH^-)] - (1/2)[\lambda^0(Ba^{2+}) + 2\lambda^0(Cl^-)]\)
= \(\lambda^0(NH_4^+) + \lambda^0(Cl^-) + (1/2)\lambda^0(Ba^{2+}) + \lambda^0(OH^-) - (1/2)\lambda^0(Ba^{2+}) - \lambda^0(Cl^-)\)
= \(\lambda^0(NH_4^+) + \lambda^0(OH^-)\)
= \(\Lambda_m^0(NH_4OH)\)
Therefore, we calculate \(\Lambda_m^0(NH_4OH)\) using the provided values:
\(\Lambda_m^0(NH_4OH) = \Lambda_m^0(NH_4Cl) + (1/2)\Lambda_m^0(Ba(OH)_2) - (1/2)\Lambda_m^0(BaCl_2)\)
= \(129.8 + (1/2)(523.28) - (1/2)(280.0)\)
= \(129.8 + 261.64 - 140.0\)
= \(251.44 S cm^2 mol^{-1}\)
This matches option
(B).