Using thermodynamics and the Euler relation for extensive properties, consider \( U = as^{4/3}v^{\alpha} \).
The Euler relation is:
\[ U = Ts - Pv, \]
where \( T \) is temperature, \( s \) is entropy, \( P \) is pressure, and \( v \) is volume.
Given \( U = as^{4/3}v^{\alpha} \), we find the partial derivatives:
\[ T = \frac{\partial U}{\partial s} = \frac{4}{3}as^{1/3}v^{\alpha}, \]
\[ P = -\frac{\partial U}{\partial v} = -\alpha as^{4/3}v^{\alpha-1}. \]
Substitute into the Euler relation \( U = Ts - Pv \):
\[ as^{4/3}v^{\alpha} = \left( \frac{4}{3}as^{1/3}v^{\alpha} \right)s - \left( -\alpha as^{4/3}v^{\alpha-1} \right)v. \]
Simplify:
\[ as^{4/3}v^{\alpha} = \frac{4}{3}as^{4/3}v^{\alpha} + \alpha as^{4/3}v^{\alpha}. \]
Factor out \( as^{4/3}v^{\alpha} \):
\[ 1 = \frac{4}{3} + \alpha. \]
Solve for \( \alpha \):
\[ \alpha = 1 - \frac{4}{3} = -\frac{1}{3}. \]
Conclusion: Therefore, \( \alpha \) is:
\[ \boxed{-\frac{1}{3}} \]