Step 1: Define purely real numbers. A complex number is purely real when its imaginary component equals zero. Step 2: Represent the expression using real and imaginary components. Let \( \omega = x + iy \) and \( \overline{\omega} = x -iy \). The expression transforms to: \[ \frac{\omega -\overline{\omega}z}{1 -z} = \frac{(x + iy) -(x -iy)z}{1 -z} \] Step 3: Simplify the expression. \[ \frac{(x + iy) -(x -iy)z}{1 -z} = \frac{x(1 -z) + iy(1 + z)}{1 -z} \] \[ = x + iy \cdot \frac{1 + z}{1 -z} \] Step 4: Equate the imaginary part to zero. For the expression to be purely real, its imaginary part must be zero: \[ y \cdot \frac{1 + z}{1 -z} = 0 \] Given that \( y eq 0 \), the condition simplifies to: \[ \frac{1 + z}{1 -z} = 0 \quad \Rightarrow \quad 1 + z = 0 \quad \Rightarrow \quad z = -1 \] Step 5: Calculate \( |z| \). For \( z = -1 \), the magnitude is \( |z| = 1 \).