The direction ratios of line \( L \) are \( \hat{i} - \hat{k} \).
Step 1: The foot of the perpendicular, \( N \), is on line \( L \). Thus, \( \overrightarrow{N} = (\lambda, 0, -\lambda) \).
Step 2: The vector \( \overrightarrow{PN} \) is \( (\lambda - 1, 0 - 2, -\lambda + 1) = (\lambda - 1, -2, -\lambda + 1) \). Vector \( \overrightarrow{PQ} \) is parallel to the plane, implying its direction ratios are proportional to the normal vector \( \mathbf{n} = \hat{i} + \hat{j} + 2\hat{k} \).
Step 3: Calculate the cosine of the angle between lines \( PN \) and \( PQ \) using the dot product: \[ \cos \alpha = \frac{\overrightarrow{PN} \cdot \overrightarrow{PQ}}{|\overrightarrow{PN}| |\overrightarrow{PQ}|} \] The result of the calculation is: \[ \cos \alpha = \frac{1}{\sqrt{3}} \]