Step 1: Determine molar masses of reactants.- \( \text{Al} \) molar mass: 26.98 g/mol.- \( \text{Cl}_2 \) molar mass: 70.90 g/mol. Step 2: Calculate moles of each reactant.- Moles of \( \text{Al} \): \[\text{Moles of Al} = \frac{4.0 \, \text{g}}{26.98 \, \text{g/mol}} = 0.148 \, \text{mol}\]- Moles of \( \text{Cl}_2 \): \[\text{Moles of Cl}_2 = \frac{6.0 \, \text{g}}{70.90 \, \text{g/mol}} = 0.085 \, \text{mol}\] Step 3: Apply reaction stoichiometry.The balanced equation indicates a 2:3 mole ratio of \( \text{Al} \) to \( \text{Cl}_2 \). The required \( \text{Cl}_2 \) moles for complete \( \text{Al} \) reaction are:\[\text{Moles of Cl}_2 = \frac{3}{2} \times \text{Moles of Al} = \frac{3}{2} \times 0.148 = 0.222 \, \text{mol}\] Step 4: Identify the limiting reactant.With 0.085 moles of \( \text{Cl}_2 \) available, and 0.222 moles required to react with all \( \text{Al} \), \( \text{Cl}_2 \) is the limiting reactant.Answer: The limiting reactant is \( \text{Cl}_2 \).