The average power in an AC circuit over one complete cycle is determined by: \[P_{\text{avg}} = V_{\text{rms}} I_{\text{rms}} \cos(\Delta \phi),\] where: - \( V_{\text{rms}} = \frac{V_0}{\sqrt{2}} \) represents the root-mean-square voltage. - \( I_{\text{rms}} = \frac{I_0}{\sqrt{2}} \) represents the root-mean-square current. - \( \Delta \phi \) is the phase difference between the voltage and current. Given values: \[V_0 = 100 \, \text{V}, \quad I_0 = 100 \times 10^{-3} \, \text{A}, \quad \Delta \phi = \frac{\pi}{3}.\] Step 1: Calculate \( V_{\text{rms}} \) and \( I_{\text{rms}} \)} \[V_{\text{rms}} = \frac{100}{\sqrt{2}}, \quad I_{\text{rms}} = \frac{100 \times 10^{-3}}{\sqrt{2}}.\] Step 2: Substitute these values into the Power Formula\[P_{\text{avg}} = \frac{100}{\sqrt{2}} \cdot \frac{100 \times 10^{-3}}{\sqrt{2}} \cdot \cos\left(\frac{\pi}{3}\right).\] Step 3: Simplify the Expression \[P_{\text{avg}} = \frac{100 \cdot 0.1}{2} \cdot \frac{1}{2} = \frac{10}{4} = 2.5 \, \text{W}.\] Final Answer: \[\boxed{2.5 \, \text{W}}\]