Step 1: Problem Definition
Given resistances: $2 \, \Omega$, $4 \, \Omega$, $6 \, \Omega$, $8 \, \Omega$. Objective: achieve an equivalent resistance of $\frac{46}{3} \, \Omega$ through a specific connection.
Step 2: Option Analysis
Each provided configuration will be assessed for its resulting equivalent resistance.
Step 3: Option (A) Evaluation
Configuration: $4 \, \Omega$ and $6 \, \Omega$ in parallel; $2 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($4 \, \Omega$, $6 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{4} + \frac{1}{6} = \frac{3 + 2}{12} = \frac{5}{12}.\]\[R_{\text{parallel}} = \frac{12}{5} \, \Omega.\]
Series resistance ($2 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 2 + 8 = 10 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{12}{5} + 10 = \frac{12}{5} + \frac{50}{5} = \frac{62}{5} \, \Omega.\]
Result: $\frac{62}{5} \, \Omega eq \frac{46}{3} \, \Omega$. Option (A) is incorrect.
Step 4: Option (B) Evaluation
Configuration: $6 \, \Omega$ and $8 \, \Omega$ in parallel; $2 \, \Omega$ and $4 \, \Omega$ in series.
Parallel resistance ($6 \, \Omega$, $8 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{6} + \frac{1}{8} = \frac{4 + 3}{24} = \frac{7}{24}.\]\[R_{\text{parallel}} = \frac{24}{7} \, \Omega.\]
Series resistance ($2 \, \Omega$, $4 \, \Omega$):\[R_{\text{series}} = 2 + 4 = 6 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{24}{7} + 6 = \frac{24}{7} + \frac{42}{7} = \frac{66}{7} \, \Omega.\]
Result: $\frac{66}{7} \, \Omega eq \frac{46}{3} \, \Omega$. Option (B) is incorrect.
Step 5: Option (C) Evaluation
Configuration: $2 \, \Omega$ and $6 \, \Omega$ in parallel; $4 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($2 \, \Omega$, $6 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{2} + \frac{1}{6} = \frac{3 + 1}{6} = \frac{4}{6} = \frac{2}{3}.\]\[R_{\text{parallel}} = \frac{3}{2} \, \Omega.\]
Series resistance ($4 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 4 + 8 = 12 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{3}{2} + 12 = \frac{3}{2} + \frac{24}{2} = \frac{27}{2} \, \Omega.\]
Result: $\frac{27}{2} \, \Omega eq \frac{46}{3} \, \Omega$. Option (C) is incorrect.
Step 6: Option (D) Evaluation
Configuration: $2 \, \Omega$ and $4 \, \Omega$ in parallel; $6 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($2 \, \Omega$, $4 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{2} + \frac{1}{4} = \frac{2 + 1}{4} = \frac{3}{4}.\]\[R_{\text{parallel}} = \frac{4}{3} \, \Omega.\]
Series resistance ($6 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 6 + 8 = 14 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{4}{3} + 14 = \frac{4}{3} + \frac{42}{3} = \frac{46}{3} \, \Omega.\]
Result: $\frac{46}{3} \, \Omega$ matches the target. Option (D) is correct.Final Answer: The correct configuration is (D) $2 \, \Omega$ and $4 \, \Omega$ in parallel with $6 \, \Omega$ and $8 \, \Omega$ in series.