Question:medium

If you are provided a set of resistances $2 \, \Omega$, $4 \, \Omega$, $6 \, \Omega$, and $8 \, \Omega$. Connect these resistances so as to obtain an equivalent resistance of \(\frac{46}{3}  \Omega.\)

Show Hint

When combining resistances, remember that:
The equivalent resistance of resistors in series is the sum of their resistances.
The equivalent resistance of resistors in parallel is given by the reciprocal of the sum of the reciprocals of their resistances.
Updated On: Nov 26, 2025
  • $4 \, \Omega$ and $6 \, \Omega$ are in parallel with $2 \, \Omega$ and $8 \, \Omega$ in series
  • $6 \, \Omega$ and $8 \, \Omega$ are in parallel with $2 \, \Omega$ and $4 \, \Omega$ in series
  • $2 \, \Omega$ and $6 \, \Omega$ are in parallel with $4 \, \Omega$ and $8 \, \Omega$ in series
  • $2 \, \Omega$ and $4 \, \Omega$ are in parallel with $6 \, \Omega$ and $8 \, \Omega$ in series
Hide Solution

The Correct Option is D

Solution and Explanation

Step 1: Problem Definition
Given resistances: $2 \, \Omega$, $4 \, \Omega$, $6 \, \Omega$, $8 \, \Omega$. Objective: achieve an equivalent resistance of $\frac{46}{3} \, \Omega$ through a specific connection.
Step 2: Option Analysis

Each provided configuration will be assessed for its resulting equivalent resistance.
Step 3: Option (A) Evaluation

Configuration: $4 \, \Omega$ and $6 \, \Omega$ in parallel; $2 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($4 \, \Omega$, $6 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{4} + \frac{1}{6} = \frac{3 + 2}{12} = \frac{5}{12}.\]\[R_{\text{parallel}} = \frac{12}{5} \, \Omega.\]
Series resistance ($2 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 2 + 8 = 10 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{12}{5} + 10 = \frac{12}{5} + \frac{50}{5} = \frac{62}{5} \, \Omega.\]
Result: $\frac{62}{5} \, \Omega eq \frac{46}{3} \, \Omega$. Option (A) is incorrect.
Step 4: Option (B) Evaluation

Configuration: $6 \, \Omega$ and $8 \, \Omega$ in parallel; $2 \, \Omega$ and $4 \, \Omega$ in series.
Parallel resistance ($6 \, \Omega$, $8 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{6} + \frac{1}{8} = \frac{4 + 3}{24} = \frac{7}{24}.\]\[R_{\text{parallel}} = \frac{24}{7} \, \Omega.\]
Series resistance ($2 \, \Omega$, $4 \, \Omega$):\[R_{\text{series}} = 2 + 4 = 6 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{24}{7} + 6 = \frac{24}{7} + \frac{42}{7} = \frac{66}{7} \, \Omega.\]
Result: $\frac{66}{7} \, \Omega eq \frac{46}{3} \, \Omega$. Option (B) is incorrect.
Step 5: Option (C) Evaluation

Configuration: $2 \, \Omega$ and $6 \, \Omega$ in parallel; $4 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($2 \, \Omega$, $6 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{2} + \frac{1}{6} = \frac{3 + 1}{6} = \frac{4}{6} = \frac{2}{3}.\]\[R_{\text{parallel}} = \frac{3}{2} \, \Omega.\]
Series resistance ($4 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 4 + 8 = 12 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{3}{2} + 12 = \frac{3}{2} + \frac{24}{2} = \frac{27}{2} \, \Omega.\]
Result: $\frac{27}{2} \, \Omega eq \frac{46}{3} \, \Omega$. Option (C) is incorrect.
Step 6: Option (D) Evaluation

Configuration: $2 \, \Omega$ and $4 \, \Omega$ in parallel; $6 \, \Omega$ and $8 \, \Omega$ in series.
Parallel resistance ($2 \, \Omega$, $4 \, \Omega$):\[\frac{1}{R_{\text{parallel}}} = \frac{1}{2} + \frac{1}{4} = \frac{2 + 1}{4} = \frac{3}{4}.\]\[R_{\text{parallel}} = \frac{4}{3} \, \Omega.\]
Series resistance ($6 \, \Omega$, $8 \, \Omega$):\[R_{\text{series}} = 6 + 8 = 14 \, \Omega.\]
Total resistance:\[R_{\text{total}} = R_{\text{parallel}} + R_{\text{series}} = \frac{4}{3} + 14 = \frac{4}{3} + \frac{42}{3} = \frac{46}{3} \, \Omega.\]
Result: $\frac{46}{3} \, \Omega$ matches the target. Option (D) is correct.Final Answer: The correct configuration is (D) $2 \, \Omega$ and $4 \, \Omega$ in parallel with $6 \, \Omega$ and $8 \, \Omega$ in series.
Was this answer helpful?
0