Step 1: Apply the energy-frequency relationship
The energy of a photon is defined as:
\[
E = h u
\]
Given:
- \(E = 6.6 \times 10^{-19} \, \text{J}\)
- \(h = 6.6 \times 10^{-34} \, \text{Js}\)
Step 2: Solve for frequency \(u\)
Rearranging the formula:
\[
u = \frac{E}{h} = \frac{6.6 \times 10^{-19}}{6.6 \times 10^{-34}} = 1 \times 10^{15} \, \text{Hz}
\]
Answer: The photon's frequency is \(1 \times 10^{15} \, \text{Hz}\). This corresponds to option (1).