Question:medium

If \( y = \log_e \left[ e^{3x} \left( \frac{x - 4}{x + 3} \right)^{3/2} \right] \), then find \( \frac{dy}{dx} \):

Show Hint

When differentiating logarithmic functions, first simplify the expression using logarithmic properties, then apply the chain rule to differentiate.
Updated On: Nov 26, 2025
  • \( 3 + \frac{21}{2(x - 4)(x + 3)} \)
  • \( 3 + \frac{21}{(x - 4)(x + 3)} \)
  • \( 3 + \frac{21}{2(x + 3)(x - 4)} \)
  • \( 3 + \frac{7}{(x - 4)(x + 3)} \)
Hide Solution

The Correct Option is A

Solution and Explanation

The function is: \[ y = \log_e \left[ e^{3x} \left( \frac{x - 4}{x + 3} \right)^{3/2} \right]. \] Step 1: Simplify the logarithmic expression. \[ y = \log_e \left( e^{3x} \right) + \log_e \left( \left( \frac{x - 4}{x + 3} \right)^{3/2} \right). \] Applying the logarithm property \( \log_e(a^b) = b \log_e(a) \): \[ y = 3x + \frac{3}{2} \log_e \left( \frac{x - 4}{x + 3} \right). \] Step 2: Differentiate \( y \) with respect to \( x \). The derivative of \( 3x \) is 3. For the second term, use the chain rule: \[ \frac{dy}{dx} = 3 + \frac{3}{2} \cdot \frac{d}{dx} \left[ \log_e \left( \frac{x - 4}{x + 3} \right) \right]. \] Using the derivative of a logarithmic function \( \frac{d}{dx} \left[ \log_e \left( \frac{u}{v} \right) \right] = \frac{1}{u/v} \cdot \frac{d}{dx} \left( \frac{u}{v} \right) \): \[ \frac{d}{dx} \left[ \log_e \left( \frac{x - 4}{x + 3} \right) \right] = \frac{1}{\frac{x - 4}{x + 3}} \cdot \frac{d}{dx} \left[ \frac{x - 4}{x + 3} \right]. \] Apply the quotient rule to differentiate \( \frac{x - 4}{x + 3} \): \[ \frac{d}{dx} \left[ \frac{x - 4}{x + 3} \right] = \frac{(x + 3)(1) - (x - 4)(1)}{(x + 3)^2} = \frac{7}{(x + 3)^2}. \] Substitute this result back into the derivative expression: \[ \frac{dy}{dx} = 3 + \frac{3}{2} \cdot \frac{1}{\frac{x - 4}{x + 3}} \cdot \frac{7}{(x + 3)^2} = 3 + \frac{3}{2} \cdot \frac{x + 3}{x - 4} \cdot \frac{7}{(x + 3)^2} = 3 + \frac{21}{2(x - 4)(x + 3)}. \] The derivative is \( 3 + \frac{21}{2(x - 4)(x + 3)} \).
Was this answer helpful?
0